X

Quantum computing research helps IBM win top spot in patent race

These exotic, radical new machines have matured enough to secure a place at CES 2021.

Stephen Shankland Former Principal Writer
Stephen Shankland worked at CNET from 1998 to 2024 and wrote about processors, digital photography, AI, quantum computing, computer science, materials science, supercomputers, drones, browsers, 3D printing, USB, and new computing technology in general. He has a soft spot in his heart for standards groups and I/O interfaces. His first big scoop was about radioactive cat poop.
Expertise Processors, semiconductors, web browsers, quantum computing, supercomputers, AI, 3D printing, drones, computer science, physics, programming, materials science, USB, UWB, Android, digital photography, science. Credentials
  • Shankland covered the tech industry for more than 25 years and was a science writer for five years before that. He has deep expertise in microprocessors, digital photography, computer hardware and software, internet standards, web technology, and more.
Stephen Shankland
4 min read
An IBM patent shows a hexagonal array of qubits in a quantum computer, arranged to minimize problems controlling the finicky data processing elements.

An IBM patent shows a hexagonal array of qubits in a quantum computer, arranged to minimize problems controlling the finicky data processing elements.

Screenshot by Stephen Shankland/CNET

IBM secured 9,130 US patents in 2020, more than any other company as measured by an annual ranking, and this year quantum computing showed up as part of Big Blue's research effort. The company wouldn't disclose how many of the patents were related to quantum computing -- certainly fewer than the 2,300 it received for artificial intelligence work and 3,000 for cloud computing -- but it's clear the company sees them as key to the future of computing.

The IFI Claims patent monitoring service compiles the list annually, and IBM is a fixture at the top. The IBM Research division, with labs around the globe, has for decades invested in projects that are far away from commercialization. Even though the work doesn't always pay dividends, it's produced Nobel prizes and led to entire industries like hard drives, computer memory and database software.

"A lot of the work we do in R&D really is not just about the number of patents, but a way of thinking," Jerry Chow, director of quantum hardware system development, said in an exclusive interview. "New ideas come out of it."

IFI's US patent list is dominated by computer technology companies. Second place went to Samsung with 6,415 patents, followed by Canon with 3,225, Microsoft with 2,905 and Intel with 2,867. Next on the list are Taiwan Semiconductor Manufacturing Corp., LG, Apple, Huawei and Qualcomm. The first non-computing company is Toyota, in 14th place.

Internationally, IBM ranked second to Samsung in patents for 2020, and industrial companies Bosch and General Electric cracked the top 10. Many patents are duplicative internationally since it's possible to file for a single patent in 153 countries.

The quantum computing priority

Quantum computing holds the potential to tackle computing problems out of reach of conventional computers. During a time when it's getting harder to improve ordinary microprocessors, quantum computers could pioneer new high-tech materials for solar panels and batteries, improve chemical processes, speed up package delivery, make factories more efficient and lower financial risks for investors.

Industrywide, quantum computing is a top research priority, with dozens of companies investing millions of dollars even though most don't expect a payoff for years. The US government is bolstering that effort with a massive multilab research effort. It's even become a headline event at this year's CES , a conference that more typically focuses on new TVs , laptops and other consumer products.

"Tactical and strategic funding is critical" to quantum computing's success, said Hyperion Research analyst Bob Sorensen. That's because, unlike more mature technologies, there's not yet any virtuous cycle where profits from today's quantum computing products and services fund the development of tomorrow's more capable successors.

IBM has taken a strong early position in quantum computing, but it's too early to pick winners in the market, Sorensen added.

The long-term goal is what's called a fault tolerant quantum computer, one that uses error correction to keep calculations humming even when individual qubits, the data processing element at the heart of quantum computers, are perturbed. In the nearer term, some customers like financial services giant JPMorgan Chase, carmaker Daimler and aerospace company Airbus are investing in quantum computing work today with the hope that it'll pay off later.

IBM quantum computing patents

Quantum computing is complicated to say the least, but a few patents illustrate what's going on in IBM's labs.

Patent No. 10,622,536 governs different lattices in which IBM lays out its qubits. Today's 27-qubit "Falcon" quantum computers use this approach, as do the newer 65-qubit "Hummingbird" machines and the much more powerful 1,121-qubit "Condor" systems due in 2023.

An IBM quantum computer

A close-up view of an IBM quantum computer. The processor is in the silver-colored cylinder.

Stephen Shankland/CNET

IBM's lattices are designed to minimize "crosstalk," in which a control signal for one qubit ends up influencing others, too. That's key to IBM's ability to manufacture working quantum processors and will become more important as qubit counts increase, letting quantum computers tackle harder problems and incorporate error correction, Chow said.

Patent No. 10,810,665 governs a higher-level quantum computing application for assessing risk -- a key part of financial services companies figuring out how to invest money. The more complex the options being judged, the slower the computation, but the IBM approach still outpaces classical computers.

Patent No. 10,599,989 describes a way of speeding up some molecular simulations, a key potential promise of quantum computers, by finding symmetries in molecules that can reduce computational complexity.

Most customers will tap into the new technology through quantum computing as a service. Because quantum computers typically must be supercooled to within a hair's breadth of absolute zero to avoid perturbing the qubits, and require spools of complicated wiring, most quantum computing customers are likely to tap into online services from companies like IBM, Google , Amazon and Microsoft that offer access to their own carefully managed machines.